
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Implementation and Analysis of

Adaptive Bit-rate Video

Streaming Architecture

by

Muhammad Hamza Bin Waheed

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Engineering

Department of Electrical Engineering

2019

www.cust.edu.pk
www.cust.edu.pk
mhamza@cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2019 by Muhammad Hamza Bin Waheed

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicate this work to my parents for their limitless love, care and inspiration

CERTIFICATE OF APPROVAL

Implementation and Analysis of Adaptive Bitrate Video

Streaming Architecture

by

Muhammad Hamza Bin Waheed

(MEE173026)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Saima Nazir FJWU, Islamabad

(b) Internal Examiner Prof. Dr. Imtiaz Taj CUST, Islamabad

(c) Supervisor Prof. Dr. Amir Qayyum CUST, Islamabad

Prof. Dr. Amir Qayyum

Thesis Supervisor

October, 2019

Dr. Noor Muhammad Khan Dr. Imtiaz Ahmad Taj

Head Dean

Dept. of Electrical Engineering Faculty of Engineering

October, 2019 October, 2019

iv

Author’s Declaration

I, Muhammad Hamza Bin Waheed hereby state that my MS thesis titled

“Implementation and Analysis of Adaptive Bit-rate Video Streaming

Architecture” is my own work and has not been submitted previously by me for

taking any degree from Capital University of Science and Technology, Islamabad

or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Muhammad Hamza Bin Waheed)

Registration No: MEE173026

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Implementa

tion and Analysis of Adaptive Bit-rate Video Streaming Architecture”

is solely my research work with no significant contribution from any other person.

Small contribution/help wherever taken has been dully acknowledged and that

complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Muhammad Hamza Bin Waheed)

Registration No: MEE173026

vi

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. Bin Waheed, M. Hamza, et al. “MMCDN: A Novel Architecture for

Multimedia Content Delivery Networks.” Proceedings of the 2019 4th Inter-

national Conference on Multimedia Systems and Signal Processing. ACM,

2019.

2. Gilani, Syed Sherjeel A., Bin Waheed, M.Hamza. “QoENGN: A QoE

Framework for Video Streaming over Next Generation Mobile Networks.”

Proceedings of the 2019 4th International Conference on Multimedia Systems

and Signal Processing. ACM, 2019.

(Muhammad Hamza Bin Waheed)

Registration No: MEE173026

vii

Acknowledgements

I hereby thank Allah Almighty to whom we belong and to whom we shall return

and by his blessings we are able to contribute our part in betterment and growth

of the world of science and engineering. I am thankful and greatly indebted to

my teacher and supervisor Prof. Dr. Amir Qayyum, without whom this work

could not have been done. His guidance throughout my thesis has been a great help

in moving to the right direction. His sincere advices, directives and constructive

criticism on my work have helped me bring out this study to a conclusion. I would

also like to express my gratitude to CEO and workers in mobilevas solutions who

have allowed me to conduct my study on their IPTV service. I am also thankful to

my parents who have been a source of encouragement and motivation throughout

my life and especially for this work.

(Muhammad Hamza Bin Waheed)

Registration No: MEE173026

viii

Abstract

The world of technology is going through a rapid transformation, which directly

impacts the life of internet users. Therefore every user may be connected to inter-

net everywhere in near future, such type of communication demands high speed

connectivity with internet that may provide data in very less response time. In

addition, the demand of multimedia contents over IP network is growing expo-

nentially with the growth of internet users. Despite of great reliability and well

defined infrastructure for IP communication, Quality of Experience (QoE) for the

users has remained main focus, while getting multimedia contents with flawless or

smooth video streaming in less time with great availability. Failure in providing

satisfactory QoE resulting in churning of the viewers. QoE depends upon various

factors, such as those factors related to network infra-structure have significant

effect on the perceive Quality. Moreover, Video content distribution have greater

impact upon QoE, which can be improved by using specialized protocols that are

responsible for video transmission over internet. Unlikely, HTTP also allows video

distribution, caching and streaming.

This research presents an architecture for multimedia distribution, caching and

streaming by using off-the-shelf components for applications such as Video on

Demand (VoD) and live streaming services. Moreover, discussion is carried out for

the factors impacting QoE and their behavior is evaluated with QoE, the statistical

data is taken from real architecture and analysis is made by using simulation tools

and through real-time data, the response time and the throughput is also compared

with the change of segment size in adaptive bit rate video streaming. Furthermore,

video transmission is done by an adaptive bit rate mechanism over HLS standard.

HTTP load balancing and DNS load balancing is also introduced to enhance QoE

and to mitigate the challenge of single point of failure. The proposed architecture

is validated and indulged as core component for video streaming in project “3GPP-

IMS compliant E2E Mobile IPTV solution for 4G/LTE Networks”

Contents

Author’s Declaration iv

Plagiarism Undertaking v

List of Publications vi

Acknowledgements vii

Abstract viii

List of Figures xi

List of Tables xiii

Abbreviations xiv

Symbols xvi

1 Introduction 1

1.1 Background . 1

1.2 HTTP Live Streaming Protocol (HLS) 4

1.3 Components of HTTP Live Streaming
Protocol . 5

1.4 Playlists . 6

2 Literature Review 7

2.1 Introduction . 7

2.2 Related Work . 8

2.3 Comparison of Architectures . 11

2.4 Existing Architectures of Content Delivery Networks 12

2.5 Limitations of Existing Research . 15

2.6 Problem Statement . 15

3 System Description and Performance Parameters 17

3.1 Introduction . 17

ix

x

3.2 Quality of Experience Metrics . 20

4 Implementation Methodology 24

4.1 Introduction . 24

4.2 Flow chart of the Architecture . 26

4.3 Components and Technologies Used 27

4.4 Benchmark Comparison with Existing
Architectures . 37

5 Simulations and Results 38

5.1 Introduction . 38

5.2 Resource Usage Evaluation . 42

5.3 Implementation in the IPTV Service 44

5.4 Testing with Seige . 45

5.5 Subjective Analysis . 48

6 Conclusion and Future Work 54

6.1 Conclusion . 54

6.2 Future Work . 55

Bibliography 57

List of Figures

1.1 Playlist sequence in the HTTP Live streaming 5

1.2 Block diagram of HLS components 6

2.1 Centralized CDN’s. 13

2.2 Multi-level CDN. 14

2.3 Peer-to-Peer CDN’s. 14

3.1 Time line during video playback . 21

3.2 Quality switch diagram . 22

3.3 Stalling Event during video playback 23

4.1 Proposed architecture for adaptive bitrate video streaming. 25

4.2 Flow Chart of Proposed Architecture 27

4.3 Caching Server stats from terminal. 30

4.4 Caching Server stats over Web interface. 31

4.5 Transcoding server procedure window terminals. 35

4.6 Folders depicting .ts files with master playlist and media playlist. . 36

4.7 Benchmark Comparison with latest testbeds. 37

5.1 Response time and accumulative time graph with number of users
with CDN. 39

5.2 J.meter simulator showing to increase the number of users 40

5.3 J.meter simulator showing Fetching of segments 40

5.4 Response time and accumulative time graph with number of users
without CDN . 41

5.5 Throughput with number of users 42

5.6 Throughput with variation of segment size 43

5.7 Throughput with variation of segment size 44

5.8 Effect of RAM on Throughput at the user End 45

5.9 Effect of RAM on Response Time at the User End 46

5.10 Effect Segment size over CPU consumption 47

5.11 Effect of segment size over Energy consumption 48

5.12 Complete Architecture diagram of IPTV service 49

5.13 Content Delivery Network Architecture 50

5.14 Results of response time VS Users load on server 51

5.15 Results of Throughput Vs Users load on server 52

5.16 Results of Number of transactions VS Users load on server 52

xi

xii

5.17 Region of smooth playing in segment sizes 53

5.18 Relationship of influence factors with subjective analysis 53

List of Tables

2.1 Architectural comparison. 12

5.1 Measurements from IPTV service. 49

5.2 MOS results. 50

xiii

Abbreviations

ABR Adaptive Bitrate

API Application Programmable Interface

CDN Content Delivery Network

E2E End-to-End

EXOPlayer HLS Player or Video Player

HLS HTTP Live Streaming

HAS HTTP Adaptive Streaming

IP Internet Protocol

ISP Internet Service Providers

IMS IP Multimedia Subsystem

LMS Learning Management System

MOOC Massive Open Online Course

P2P Point to Point

QoE Quality of Experince

QoS Quality of Service

RTP Real Time Protocol

RTSP Real Time Streaming Protocol

SDP Session Description Protocol

SIP Session Initiation Protocol

STB Set-top Box

URI Universal Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

VOIP Voice Over IP

xiv

xv

WebRTC Web Real Time Communication

Symbols

beta Number of Stalling Events

Sum Summation

To Starting Time

Tn Ending Time

p Iterative Index

Cp Bitrate of Chunks

xvi

Chapter 1

Introduction

1.1 Background

In this era of internet, the usage of multimedia content is tremendously increasing

that results in a congruent increase in demands of multimedia content delivery for

meeting the requirements of users. The commonly used technique for streaming of

video on demand and live video is the Hypertext Transfer Protocol (HTTP). Such

protocol provides a mechanism for adaptive streaming known as Hypertext Trans-

fer Protocol Adaptive Streaming (HAS) [1]. This mechanism became popular for

using HTTP as its primary method of transportation in the internet applications.

Moreover, this protocol is much easier to configure while allowing Network Address

Translation [2]. In present networks, Quality of Experience (QoE) is the key focus

of service providers, because of similar available resources in market that create

hovering of users from one service to other in order to get their resources in lesser

time with high quality. In case of videos, this phenomenon is observed significantly,

as user gets annoyed when videos take too much time to play. Multimedia content

is revolutionizing with the passage of time. It is experiencing enhancements in

quality and resolutions of videos to a greater extent that increases the bandwidth

consumption, however, better the video quality more space needed to store the

content and much higher bandwidth should be available for the delivery of these

1

Introduction 2

videos. Commercially available content caching and delivery solutions are not only

expensive but also give less control to service providers over content management.

IPTV services have the same type of effect as discussed above,these services not

only include Video on Demand (VoD) service but also having capability of live

streaming of videos. The content management and distribution in these services

should be organized in a way that may enhance the quality of experience for users,

as well as cost effectiveness for the service providers. Several global vendors such

as Netflix, YouTube and Hulu use the technology of HTTP Adaptive Streaming

(HAS) [3] to deliver the up to mark QoE to its end clients while keeping in view

network quality or Quality of Service (QoS), which includes delay, packet size,

packet loss ratio, jitter, response time and throughput [4]. In HAS, the original

video content is converted into several bitrates, each bit-rate is further converted

into number of segments by segmenter, which may have called as chunk. Each

video segment or chunk has the video of fixed durations in seconds [5]. The path

or address of chunks are stored in high level language file called a media presen-

tation description or a manifest file. Once the user has a manifest file then it is

very easy to stream the video content from the original server or rather from the

content delivery networks (CDNs) [6]. The main feature of the HAS is to allow

a multimedia player to adapt the video stream or to demand the optimal video

stream, while keeping in view the condition of network and to switch the between

different representations of same video content seamlessly and effectively. Several

giant company holders implemented their proprietary protocols for adaptive mul-

timedia streaming for example Apple [7], Microsoft (MSS) [8], and MPEG-DASH

as mentioned [9] [10]. Most of them have similar features while using different

formats and mechanism for HAS.

Presently, modern smart phones and mobile devices have much greater computing

powers, capabilities and are able to perform multiple tasks effectively and in a

short time. Moreover, these devices can use different ports and interfaces to con-

nect to global internet [11] [12]. Mobility is the most fascinating and demanding

feature of these devices as everyone wants to connect with internet from every-

where whether from their home, offices and from picnic places,which allows user

Introduction 3

to stream multimedia application in all these places in effective way. Furthermore,

multimedia services are generating very high percentage of downstream traffic.

Such as the bandwidth usage of Netflix, a video content provider jumps to 40

percent of the Internet traffic and consumes more bandwidth then YouTube and

Amazon. As mentioned by Cisco [13] that the global mobile traffic will increase 8

percent of the current mobile traffic between 2015 and 2020.

While keeping in view all these issues, this research presents an architecture for

Multimedia content cache, management and delivery in a scalable environment,

which is not only cost effective for multimedia service providers but also easy to

deploy and to configure for their own content delivery network. The proposed ar-

chitecture is developed using off-the-shelf components. It provides HTTP caching,

DNS load balancing, HTTP based load balancing, HTTP web managing of cache

that ensures the maximum uptime of multimedia services. A Transcoding server

is also included in proposed architecture, which has the ability to do efficient en-

coding and decoding of raw videos into multiple segments of short duration having

bitrates for low, medium and high resolution quality. This transcoding server is

responsible for increasing QoE for the users as they are able to stream videos

segments with low bitrates if they do not have enough bandwidth to stream high

resolution video segments. The protocol used in transcoding of videos is HLS

(HTTP Live Streaming), which is developed by Apple and is widely supported

in multimedia servers moreover it is based on standard HTTP transactions and

easily configured with every multimedia service. HLS basically converts raw video

file into multiple short time chunks having extension of .ts file, which are pointed

by a playlist having path of all these chunks, playlist have an extension of .m3u8,

which is further pointed by master playlist, master playlist serves as bank for each

existing video qualities. Both media playlist and master playlist are UTF-8 for-

mats and having URI and descriptive tag about every index file in case of media

playlist and playlist file in case of master playlist.

Introduction 4

1.2 HTTP Live Streaming Protocol (HLS)

Internet provides access to users in order to get connected with the people around

the world and also became main source of multimedia content distribution in the

recent years HLS is one of the widely used protocols that enables users to choose

bitrate of the video content by monitoring current network conditions for main-

taining uninterrupted playback of the video at its best quality. It is able to manage

interstitial content boundaries while providing modifiable and easily manageable

framework for the encryption of media contents. HLS yields multiple interpre-

tations of the same content, for example translation of the audio. It provides

compatible infrastructure to get easily connected to large scale HTTP caching

servers to enable delivery of content on a bigger scale.

Streams of HLS are formed in real time and contained over the webservers mainly

HTTP servers. Formation of streams includes breakdown of the video content

into smaller size segments, called as chunks, these segments have .ts file extension

and also formed a master file with .M3U8 extension which referred as manifest

file which act as an index file for the video segments. It mainly works for mpeg-2

format. Master playlist is the main file that information about all other index files

that are separate for all the different qualities. This master file even also exists,

when we are broadcasting only a single quality video. The figure 1.1 represents

the playlist sequence in HLS.

While describing a broader concept, HLS hardware encoder takes input of video-

audio file and encode it with H.264 encoder and AAC audio encoder and generates

the MPEG-2 stream, which is the further splitted into .ts files, these .ts files

are pointed by the .M3U8 file. The client player will receive master file, while

requesting the URL of the video. This software enables users to watch flawless

video playback.

Introduction 5

Figure 1.1: Playlist sequence in the HTTP Live streaming

1.3 Components of HTTP Live Streaming

Protocol

There are three main components of HTTP Live Streaming Protocol:

1. Server: Responsible for encoding and decoding of the raw video file.

2. Distribution: Responsible for delivering video content to the end client soft-

ware.

3. Clients: Enables users to watch video content in an unbreakable form

These are components can be shown in the figure 1.2:

Introduction 6

Figure 1.2: Block diagram of HLS components

1.4 Playlists

All the information about different quality streams and their specified paths are

stored in playlists . There are two types of playlists:

1. Master playlist.

2. Media playlist.

These playlists are Unicode Transformation Format (UTF-8) text files, which con-

tains special tags and URIs that have description about the desired media. Media

playlist basically have the details about video chunks and master playlist have

detail about the media playlist files.

Chapter 2

Literature Review

2.1 Introduction

Over the past few years, internet is spreading as nuclear reaction all over the world,

leading towards an increase in network traffic and data causing network congestion

and low response time of services over the internet. The increased request over the

same servers can create hotspot on web servers [14] and the web servers are over-

whelmed by demands of resources from many users at the same time, leaving the

web servers in temporary unreachable state. These issues may easily be mitigated

by using Content Delivery Networks (CDNs). This type of network brings data

near the users and cache data in ready to use form, therefore throughput as well

as uptime of the website is getting increased by using CDN technology [15]. More

often, users even configured their own CDN’s on technologies like Word press for

their own websites. Most of the CDN providers, generating much revenues because

of various undeniable features of CDN services that increase Quality of Experi-

ence for the users. These trends of functionality and revenue attracts researchers

to work in this field and generate feasible and easily manageable solutions for the

content providers.

An effective delivery of resources by using network elements can be declared as

Content Delivery Network (CDN) [16]. It may be in many forms according to

7

Literature Review 8

need, as it may be centralized or decentralized, in an administrative domain or

in more than one. Features that are important in CDN’s are redirection of user’s

request, distribution among various servers, content retrieval and management of

the content and servers [17]. The performance of the CDNs can be enhanced by

making mirror servers of the original one and redirecting users to most suitable

one on the basis of some criterion, which reduce the sudden load on the main

servers. CDN can greatly reduce the response time and quality of service in video

streaming architectures [18]. In CDNs, digital data is used in which static and

dynamic data can be differently categorized and deal in that way to improve the

performance of the service [19]. The architecture of CDN is based on three main

roles that is resource provider, CDN provider and the end users. Mostly third

party CDNs are used by many content provider organizations as they are unable

to manage their own CDNs. Caching in CDN plays important role as the content

is replicate on different servers located in different areas,to provide this cached

content to nearest users of that area called surrogates or edge servers.

2.2 Related Work

This section includes both the related work of content delivery networks as well

as the work for adaptive bitrate video streaming architectures.

Content Delivery Network (CDNs)

Content delivery networks remained the basic demand of every content provider

company and it is increasing with the increase in multimedia content over internet,

because of the much needed bandwidth. Therefore, research in CDNs becomes hot

topic for the research in efficient delivery and streaming of multimedia content and

several works has been proposed for the content distribution networks [20]. [21]

Authors suggested architectures by using open source components in educational

context and in commercial context as product for generating revenues.

Literature Review 9

In [22], authors present the architecture of distributed content delivery network

(DCDN), in which they use available components on internet and proposed multi-

level based architecture, while mostly focusing on load balancer and discussed

the disadvantages of commercially used content delivery networks. Another archi-

tecture that presents a Hybrid content delivery network, in which authors used

multiple commercially available services, combined them together and reduce the

intermittencies of all individual commercial available distribution networks, and

compare individual services with their Hybrid solution architecture [23], but as

commercial services are used, therefore they are not specific for the traffic of sin-

gle content provider and cannot cope up with the efficiency as required, more-

over a commercial service is also expensive and cannot be used by organizations

deal with large multimedia content. The centralized architectures are also pre-

sented and comparisons are available for the performance evaluation of content

distributed networks and their limitations. Moreover, many literature is available

for the different taxonomy of CDNs [24].

Adaptive Bitrate Video Streaming

Content distributors are also developing techniques and tools for their own content

delivery efficiently and generating revenues from their own infrastructure. White

papers presented the need and the key components that should be included in

the content delivery architecture to optimize the delivery process and Quality

of service is increased by enhancement of Quality of experience. Open connect

is the architecture deployed by Netflix for video distribution over VOD services,

not only used by their services but also they market their product to generate

revenues. Another contribution in [25] that presents the architecture and gives the

overview of the mobile streaming content delivery networks. This paper basically

tells about a brief description of the MSM-CDN system, and presents the testbed

design that is built based on these architectural principles. This research provides

new platform for distribution of media content. Pedro Luis deployed a virtual

architecture in the university of Quindio, in which he presents two architectures,

Literature Review 10

one for video on demand (VOD) and other for live streaming of video over HTTP

for broadcast of educational material. It uses DASH protocol to test the capacity

of its server by using stress tool by Apache and only provide the results of response

time of server over different bitrate and number of users.

Moreover, it does not include the support of any cache server, load balancer and

did not provide the effect of segment sizes. He created a virtualized environment

and did not uses the simulator that actually can download the chunks created by

DASH and provide optimal response time [26]. Another architecture proposed by

Miran Taha, which is a virtualized network environment and created over VNX

program over the single machine including cache serve support, uses DASH pro-

tocol to transcode the video into its segments and evaluate QoE metrices in his

architecture by doing subjective analysis of number of stalling events, number of

time video changes its resolution during playback time by conducting video ses-

sion. Moreover, accumulative time and CPU usage is also evaluated in his paper.

Miran suggested preferable segment size for the videos are 6-8 seconds after eval-

uation of mean opinion score (MOS) [27]. Anatoliy Zabrovskiy et al; presents

simulations with simple architecture over mini-net and uses bit-codin service for

transcoding of videos, they evaluated switching representation parameter iin his

research by performing experiments on mini-net environment [28].

Hassan et al; presents research on streaming over WiMAX networks by using

Opnet++ simulator upon one physical node, which have capability of easy mo-

bility and evaluate the effect of various segment size of video on throughput and

CPU computations and found that small segment sizes are useful in quality video

streaming. This architecture was quite simple without any cache and load bal-

ancing servers [29]. Yae et al; deploy a real environment testbed for investigating

initial delay, stall, throughput and CPU consumption in DASH video streaming.

He used five nodes for his deployment in a simple network topology and analyze

that small segments give better throughput then bigger segment sizes [30]. Jae-

hyun Hwang et al analyzes the different segment length for adaptive bitrate video

streaming and conclude that smaller the segments fastest will be there reaction,

Literature Review 11

when network bandwidth oscillates or problems like network fluctuation and net-

work congestion occurs [31]. Another study presented in [32], in which author’s

takes benefit from the CDN’s and proposed the streaming service along with incor-

porating content delivery network distribution and its management and presented

a study in the comparison of P2P video streaming and with CDN streaming and

Analyzed the better performance is archived with CDN in contrast to P2P deliv-

ery, this work was done in simulations its real scenario is still missing yet. some

studies were made on the streaming of adaptive bitrate video streaming in Educa-

tional context in which the author in [33], proposed a solution for streaming and

video palyback using periscope, this solution was proposed to globalized the edu-

cation of pathology. In [34], streaming is done for the education of online courses

and teaching, in which good quality of experience matters for which solution is

proposed for the delivery of educational notes over HTTP. A concept of Massive

open online courses is presented in [35], that uses the video streaming application

as main resource in delivery of educational notes. Another research is presented

and validated over emulated scenario about the control of the video selection,

while switching of the video is controlled by controller [36]. This adaption of video

automatically done by using controllers at users end application and actuators

at the server side and another control which is switch control loop performs role

to control the switching between streams. The study [37], that incorporates the

architecture WebRTC technology that transforms the way of communication as

it enables the real time communication of the web clients. It includes the incor-

porating power of API’s, in build video and audio codec, the web interfaces and

plugin’s . These were offered by some big companies like telestax [38] and Bistri,

that provides the intelligent platforms for video conferences.

2.3 Comparison of Architectures

In the table 2.1, a complete comparison of architecture is provided on the basis

of Protocol used, technology used and the their applications in which some state

of the art architectures were compared that has been used in the broadcasting of

Literature Review 12

Comparison of architectures
Research Description Technology Protocols Applied
F.A.
Urbano
[20]

Architecture for
video streaming

Live555,RTSP,
ffmpeg

RTSP,RTP,SDP General

M.Y.
Fuller
[33]

provide architec-
ture for mobile
clients

Periscope,Andriod
IOS

N/A pathology

T.
Hartsell
[34]

integration of
streaming in
Educational
purposes

MPEG,HELIX RTSP Educational

K.
Sigama
[35]

Implementation
of higher educa-
tion

LMS,HTML N/A Education

A.B.
Johnston
[37]

Real time com-
munication
project

HTML5,JAVA,
VOIP

HTTP,SIP,
RTP

Generic

Table 2.1: Architectural comparison.

educational material through video streaming architectures,some general purpose

architectures and Architectures used in mobile IOS for enhancing the mobility has

been discussed this comparison.

2.4 Existing Architectures of Content Delivery

Networks

The commonly used CDN architectures are:

• Centralized

• Hierarchal

• Peer-to-Peer

Literature Review 13

When there was no or very less demand for video streaming, like it is today,

the centralized architectures were adapted by CDN developers for caching and

distribution of content. Such type of architectures has single point failure problem

and vulnerable performance bottleneck of video servers. To reduce response time

and increasing performance of video server, caching servers are introduced and

bring near to users, where content is to be delivered [39]. These type of structures

are easily manageable but with single point of failure as a major issue. Figure 2.1

shows the architecture of Centralized CDN’s. In architectures that break down

Figure 2.1: Centralized CDN’s.

and divide the content distributed network into many levels are hierarchical CDN

architecture. Which improves Quality of service, because the single point of failure

is obsolete from this architecture. If one level fails to bring the requested data,

some other level will bring it and provide it to users, forming multiple hierarchical

levels [40], thus increasing the demand of video streaming server exponentially

with the cost of this architecture. Figure 2.2 shows the architecture of Multi-

level CDN’s. Third architecture is Peer-to-Peer CDN architecture (Figure 2.3), in

which CDN is also divided in many peer areas, where every peer connection acts as

cluster of local video servers. Each local server has complete replication of original

server and every peer server, serves to users in its area [41]. For VOD response

time is better and the load balancing is occurring between peers to get maximum

Literature Review 14

Figure 2.2: Multi-level CDN.

uptime. Many authors [42], proposed real as well as virtualized networks testbeds

for carry out experiments [43]. The execution of both virtualized and real scenarios

has been done in [44]. They provide comparison on different network scenarios and

observe in the test results that packet loss and delay of real time scenario consume

higher rate than simulated scenarios.

Figure 2.3: Peer-to-Peer CDN’s.

Literature Review 15

2.5 Limitations of Existing Research

There are some limitations of existing research that are enlisted below:

1. Most of the solution discussed in the literature are theoretical and simulation

based.

2. Architectures are without any real deployment while capturing the important

performance metrics.

3. Many researches were carried out over ABR architecture, only some testbeds

were found incorporating the effect of Content delivery networks.

4. The effect of Content Delivery Network is also judge through simulation and

real deployment is still missing.

5. Researches providing the optimal segment size, but subjective analysis is

missing.

6. Segment sizes up-to 15 seconds were analyzed.

7. The current available solutions over cloud or in market of Content Delivery

Networks are expensive.

8. CDNs of the third party provides lesser control to the Content managing

organization.

9. Most of CDNs are not designed for the one’s own service.

10. Data managing and handling is difficult in third party solutions.

2.6 Problem Statement

To-date, most of the research in multimedia streaming architectures has been

oriented towards analyzing their performance and quality of experience by using

virtualized network testbeds or simulated environment on the basis of various

Literature Review 16

performance metrics such as delay and packet loss without incorporating content

delivery networks and impact of varying segment size. However, using globally

available CDNs make the multimedia streaming solutions more costly, and beyond

the affordability of multimedia content providers. Moreover, a significant challenge

of load balancing while streaming video contents has not been addressed by the

existing multimedia architectures.

The proposed architecture analyzes the effect of RAM, throughput, response time,

multiple transactions, varying segment size, and deployment over the same archi-

tecture with incorporating content delivery network in the real time application.

Chapter 3

System Description and

Performance Parameters

3.1 Introduction

This section presents the more detailed information about the system and com-

ponents necessary for real environment deployment. Conventionally, multimedia

content transportation over the internet can be considered by using vast networks,

which includes content delivery networks (CDN’s), where user connects to ISP by

means of wired or wireless media such as Wi-Fi. The video is delivered to users by

using different network access environment through cache servers nearest to the

users. When the content is not available in cache servers or replica server then

the cache server, fetch the request of user from the main server and serve the user

with the desired request and also save the copy of the content in itself also for the

future requests of the users. The request can be fulfilled by other replica servers

and main servers [45].

The principle system design contains both virtualized and real nodes. The system

components which are main streaming server, cache servers and load balancers are

deployed on real physical machine, every component is separate virtual machine

(VM) which is deployed on single physical server. These machine are running

17

System Description and Performance Parameters 18

over Linux 16.04 operating system. Transcoding server is deployed on separate

physical machine equipped with high processing power for fast transcoding of the

videos. Moreover, DNS load balancing is achieved through a cloud application

named dyna to provide maximum uptime of the service.

Transcoding server is configured with Transcoding Service for Live and Video on

Demand content. This service takes live channels or recorded media content in

any format as input and converts it to HLS format for streaming to clients and

also has convert video into adaptive bit rate video. This transcoding service has

following parts:

1. JSON parser: The JSON parser is responsible to parse JSON commands.

2. Demultiplexer: The Demultiplexer used for the seperation of voice and video

from the video content that was inserted at the input of the demultiplexer

and after seperation pass down in the pipeline for further actions.

3. Decoder: After demultiplexing of the audio and video decoding is applied

on the stream and converted into raw video file.

4. Encoder: After decoding, we have raw file is used to encode it with our own

desired encoder which can be H.264 and H.265.

5. Multiplexer: While before decode we demultiplexed all the content, now we

multiplexed both the audio or video generated at the encoder output.

6. Adaptive bit-rate conversion: ABR feature is of much importance as after

all the steps done, now we have to convert encoded media file into several

content files of different resolutions and bit-rates, for this transcoding service

convert them into media playlist and master playlist and make them in a

format that they can be easily interpret at the clients end with specific

modifiable bitrate.

7. Transcoding Instance Statistics: The service used in this research is also ca-

pable of determining important details about the service while on the run

System Description and Performance Parameters 19

time, this details includes ,messages about errors occurs during the transcod-

ing, completion, not completed, time at which it starts , time at which it

stopes, moreover these statistics can be used by application to automatically

control all flow.

origin server is referred as main streaming server where all the transcoding media

is stored, is also referred as origin server or content provider server which all the

content provider transcoded media is stored all the new media will be stored there

before it stream to users.

Cache servers are the replica server which serves the user with media content, if

cache server do not have the desired content then it requests the content through

the main server and serves the user and store a copy of the content itself on the

mean time.

Load balancer/DNS load balancer are the front end application, which is config-

ured in a way to balance the load between all the cache servers and DNS load

balancing servers to save the single point of failure and provide optimal uptime of

the service.

The proposed research design has ability to connect the external networks: in-

ternet or intra-net. Clients can be connected through any type of heterogeneous

devices. For the objective as well as subjective analysis, proposed system have

used both ways to request the video content for its performance analysis, first

through simulated nodes or users by using J.meter simulator that have ability to

request the adaptive bit-rate videos and generate the results of throughput, initial

delay and latency by increasing the number of threads simultaneously. Second

way is to generate request by real users through their mobile phones as well as

through their laptops. An app is developed for the mobile users for request of

videos. In which EXO player is deployed and configured, through which adaptive

bi-trate video content is delivered to users without any hindrance, moreover this

App is configured in a way that it able to provide all the real time statistics of the

current video that user is viewing and store the information in text file and after

System Description and Performance Parameters 20

reading these statistics and watching the current bandwidth available for user,

EXO player takes decision about the quality of the video that should be delivered

to user. A script is written in the open source file EXO player to retrieve all the

real time statistics of video streaming. When the bandwidth and bit-rate of the

user are less then optimal threshold the EXO player switch the quality of the video

in the seamless manner, which reduces the number of stalls and hence increasing

the quality of Experience of the user.

3.2 Quality of Experience Metrics

This section contains information about the QoE metrics, which we have used in

my research to calculate and analyse the effect of these metrics over the QoE and

to get information about how there variations results in the change of overall QoE.

Initial Delay

This metric defines the period between starting time of loading a video and staring

time of playing it [46]. The user end application formed a buffer length of T

duration in seconds, this T depends upon the video segments size requested by

the user and the time which the buffer is available for the maximum size related to

QoS (Quality of service) factors such as availability of high bandwidth, variations

in the bandwidth at user end and packet loss or packet drop rate. Bss is denoted

as a buffer size of segment length, where Bssi ¡ Bssi+1, where I = 1 to M, and

M is the maximium number of segment length. The user end application, which

our case is EXO-player or HLS player will start to receive data at time To and

accumulate them in the queue maintained by the application before its first frame

delivered at Tn, which would have some delay or greater response time of the

video.

System Description and Performance Parameters 21

Figure 3.1: Time line during video playback

Quality Switching Frequency

Number of switches describes the number of times the quality changes from one bit-

rate to another in the entire video session, it depends upon two factors: number of

bits flowed through the channel in one second and the instability of the throughput

at the user end, when these both parameter are not optimized then the number of

oscillations or the number of switches increases, which will definitely reduce the

QoE of the user as the greater the number of switches in the entire session the user

will get irritated and may lead to switch the channel and service you are providing

because when the switch occur a stall will also occur for much smaller time and

also jitter and glitches are seen on the screen of the device user is watching any

video, hence with the increase in number of switches the QoE will hurt, therefore

we need to minimize the number of switches. The change of number of switches

can be described by the following formula:

n∑
p=1

g(Cp)

where p can be from 1-n, n is maximum time bit-rate change, Cp stands for the

chunk current bit-rate, there the value of the above function can be represented as

1 if the g(Cp − 1) 6= g(Cp), means if the current bit-rate and the previous bit-rate

is not equal then the value of the function will be 1 and the value of quality switch

will be incremented.

System Description and Performance Parameters 22

`

H
I
G
H

Q
U
A
L
I
T
Y

M
E
D
I
U
M

Q
U
A
L
I
T
Y

L
O
W

Q
U
A
LI
T
Y

Figure 3.2: Quality switch diagram

Number of Stalling Events

Number of stalling events may also referred as number of pauses, stopes or number

of time the video tends to buffer in the whole video sessions, this is very important

parameter in the prediction of QoE as we have noticed it, as many stalling events

occurs during the playback of video, the mean score for rating reduces because

users get irritated as the frequency of pauses increases and average time of the

video in complete video session increases.

Avg buffer time = β0 + β1 + β2 +βn

where β is the number of times the video stall’s, therefore the Avg buffer time is

sum of all the pauses in the video session. Figure 3.3 shows the stalling event that

occurs during the playback.

System Description and Performance Parameters 23

Figure 3.3: Stalling Event during video playback

Mean Opinion Score

Mean Opinion score is also calculated to see the effect these above mentioned

parameter, that to which extent they may result in the variation of QoE. Moreover

to check and analyse the behaviour of the metrics with subjective analysis and

objective analysis, subjective analysis is the way to rate the Quality of Experience

from people know about the video quality and have interest in generating some

meaningful reviews, in this research case, i have used as defined criteria in all

around the World for the rating of QoE, which can results in telling whether the

user is satisfied or being annoyed. the criteria of rating can range from 1-5 , where

the results from 3-5 tells about the users satisfaction and from 1-2 means that the

user get annoyed.

Chapter 4

Implementation Methodology

This section presents the implementation of the overall model, in which flow chart,

architectural diagram and configuration of every component is given in detail.

4.1 Introduction

This research presents the novel architecture of HTTP based content distribution

network for IPTV service in figure 4.1 and its Quality of Experience analysis,

which have DNS load balancing, HTTP based load balancing, caching servers,

web-servers, origin server and transcoding server, that constitutes of encoding

server and segmentation server, which will provide efficient video streaming to the

end users. As shown in the figure 4, stream of video is coming from video source

in case of Live video transmission and pre encoded videos are thrown to the input

pipe of transcoding, where this encoding server will encode it into small segments

of variable length and various bit-rate segments of the original video, using HLS

protocol.

These adaptive bitrate segments of variable lengths are stored in origin server or

video streaming server. All the content from streaming server will be pushed to

webservers that are located on different areas, near to the end users, from where

all the multimedia content will be cached in to caching servers near to the users

24

Implementation Methodology 25

Figure 4.1: Proposed architecture for adaptive bitrate video streaming.

according to their location, when it is demanded by any of the user. When any

content is requested by some user the caching server will check with in itself that

whether, it contains respective content or not. If there is cached content, it will

deliver cached content with no time to the requested user, but if the content is not

cached, it will pull this content from the HTTP video servers and then store it and

deliver it to the user. Two level load balancing implemented in this architecture

is:

1. HTTP load balancing

2. DNS load balancing

HTTP load balancing is between multi-level architecture containing web-server

and HTTP server as shown in the figure 4, which will deliver requests using round

Implementation Methodology 26

robin fashion for mitigating the issue of single point of failure. This research

provides DNS load balancing over cloud like (dyna) over which two or more IP’s

will be given to toggle the server, or for testing purposes another load balancer

server is for load balancing of the load balancer. It will shift to other load balancer,

if the current load balancer will be overwhelmed by lot of requests and becomes

temporally unavailable.

The proposed architecture uses off-the-shelf components that are easily config-

urable, manageable and are efficient in terms of response time. Moreover, this

architecture has ability to be scaled without disturbing the current configurations,

only by adding more levels over cloud based DNS load balancing as well as over

HTTP based load balancing. The caching server has also ability to be scaled easily

just by configuring their configuration files, as IP of multiple server can be given

in its configuration of caching servers. There are web mangers for every caching

server over the internet, upon which the configurations, statistics can easily be

seen and monitored. Videos content will be delivered to the user, using HLS play-

ers, in adaptive bit-rate that will automatically change the bit-rate of the video

as the network bandwidth and bit-rate of the video content changes at the user

end. If the bandwidth of user is enough to smoothly run video at higher bit-rate,

then the high quality segments generated by encoding server will be delivered to

the users otherwise low or medium quality segments will be delivered.

4.2 Flow chart of the Architecture

The flow chart in figure 4.2 describes the complete flow of the architecture in

which the role of cache service is also demonstrated with the help of diagram. it

only describe the flow of system that includes all the main servers, cache servers,

network connection and the request handled by load balancer and cache servers.

Implementation Methodology 27

Figure 4.2: Flow Chart of Proposed Architecture

4.3 Components and Technologies Used

The components and technologies used are explained in context with every archi-

tectural component in below section.

Load Balancer

The implementation of load balancer is in Ubuntu 16.04 LTS on open source

platform called Nginx. Web-servers as well as load balancer are both implemented

by using Nginx platform, the task of the load balancer is to distribute request

or balance requests from the user to multiple web-server, so that we can able

Implementation Methodology 28

to provide content to user from overwhelming the single web-server. Nginx used

following algorithms for load balancing:

1. Round robin algorithm.

2. Least connected algorithm.

3. Weighted load balancing algorithm.

4. Session persistence.

5. IP hash load balancing algorithm.

The algorithm that is preferred from all of the available algorithm is IP hash

algorithm in which client IP is used as hashing key for its redirection, means this

algorithm generates a unique hashing key by processing the IP address of the client

requesting for desired web-server, in IPV4 it see the first 3 octet as hashing key

for the client IP address, for example 192.168.2.1 and 192.168.2.3, in this example

it will always redirect user to same web-server because the network address of the

both users are same. It means if we want to use this algorithm then the network

address should be different for every user to route them to specific web-server

according to the hashing key generated by this algorithm. However, for testing

purposes we have used round robin algorithm, because all VM’s have same network

addresses, therefore have same hashing key.

The load balancer using Nginx can be configured, but before this we need to install

Nginx platform in our Linux distribution, we have used virtual machine with RAM

of 1GB for load balancing. Nginx can be installed using command in command

line:

Sudo apt-get install Nginx After its installation completes, we can configure load

balancer by going into the configuration file of Nginx which located at the path

/etc/nginx/site-available, by enabling them to listen on port 80 and also defining

the servers available for load balancing with proper tags, you can configure Nginx

load balancer.

Implementation Methodology 29

HTTP Caching Server

The task of reverse proxy is same as that of load balancer that to balance the

traffic coming from different users, but we added this to add another hierarchy

of balancing the load to increase efficiency of our Webserver. HTTP caching will

cache content as requested by the user, first it will check in its log file that, whether

it has content or not, if the content is missing then it will bring it in its server and

maintain its log file. We have used varnish caching server; varnish is also open

source tool through which Web acceleration as well as HTTP Caching is done.

The strategy followed by varnish for retrieval of content is pull strategy. Multiple

features of varnish that pulls us, towards its implementation in our architecture:

1. Time to cache the Web page content..

2. The allocated storage for content cache by default is 1 GB but can be changed

to any number.

3. The settings, which can allow you to specifically block the data, you don’t

want to cache.

4. It allows to cache chunks of file, for example not to cache complete 4GB

video but to cache its chunks.

5. Varnish uses a built-in tool called backend polling to check on the backend

server and continue serving cached content if the backend is unreachable.

In the event that Varnish detects downtime, it will continue serving cached

content for a grace time.

HTTP caching server can be configured on Linux distribution; varnish uses pull

based strategy to cache videos and content from the main server, pull strategy

means that when any user request for desired content then cache server will cache

the content in itself as well as distribute it to the user also. Varnish will be running

on port 80, for its configuration, we will edit the configuration directory which is

default.vcl and is available on specific path which is: /etc/varnish, therefore we can

Implementation Methodology 30

edit configuration file for configuring backend servers using Nano or Vim editors.

Moreover, varnish service file is on path /lib/system/system, where all the service

settings of varnish is configured.

The figure 4.3 depicts about the caching server stats taken from the command line

terminal of Linux, showing the important parameters like, cache miss, cache hit

etc.

Figure 4.3: Caching Server stats from terminal.

Varnish Agent

All the caching server in our architecture can be monitored and the performance

of the caching server can be analyzed using varnish agent, it’s an open source

utility, used to couple with any varnish server for monitoring and data analysis of

the server’s statistics. Varnish agent is web based tool and operates at 6085 port

of any server in which it is configured, combined with varnish dashboard gives

graphical statistics, making easier to understand the performance of the entire

Implementation Methodology 31

caching server. The figure 4.4 shows the statistics taken from the web interface

through which we can control our caching server activities without going into

the VCL file of the Caching server and without using Linux interface, it can be

configured and changed from server by going to this IP address.

Figure 4.4: Caching Server stats over Web interface.

Configuration of Transcoding Server

The transcoding server is configured on separate high power Lenovo machine, and

Linux distribution 16.04 LTS with RAM of 4 GB is virtually configured using

virtual box on the machine for time efficient and good quality transcoding of the

videos into multiple bitrates. Before the deployment of transcoding server, I had

install various supporting packages and libraries by using command terminal of

the Linux, first of all we need to install and configure h264 encoder and its library

that for installing and configuring we need to install yasm assembler that will

parse the script of the installing module of the h264. This can be install by using

command: sudo apt-get install yasm

Implementation Methodology 32

We have to download the h264 encoder library in my case I had used x264-97eaef2

version, which was in tar format means, we have to unzip this file by writing

command in terminal:

tar xvf x264-97eaef2.tar.gz

this command will unzip the library and you will have extracted x264 library, for

configuring it we have to go it folder with name of x264-97eaef2 by using command:

cd x264-97eaef2

After this configure this library by using command:

./configure –enable-shared –disable-static

make

by executing these commands x264 library will be installed in your distribution.

Another important this is FFmpeg, FFmpeg is a multimedia framework and having

capability of encoding, decoding, mux, demux, filter, stream and play the videos

and everything that is between the human creations and the machines. This

framework can be installed after downloading it from its source, I had used ffmpeg-

3.2 version, it was also in tar format therefore I had to extract it, which was done

through commands given below:

tar xvf ffmpeg-3.2.tar.bz2

sudo apt-get install libsdl2-dev

./configure –enable-shared –enable-libx264 –enable-gpl

make

sudo make install

After this had install the transcoding service, I had used in the project of IPTV,

this can be easily installed using by extracting it:

Tar xvf transcoding-service.atr.gz

Implementation Methodology 33

cd transcoding service

make

After successful installation of transcoding service, we can run transcoding service

by going into the folder of transcoding service by using command line terminal.

The command used for running transcoding service is:

cd transcoding-service

./trans-service –input=../input-pipe –output-pipe=../output-pipe

This command will run the transcoding service and now the input pipe is opened

for the Json incoming command, after running the command which can be seen in

the figure below, we have send command for the transcoding of the video through

Json command, for this open another terminal and write whole command starting

with echo, small portion of the command is given below to explain the functionality

of some commands:

”Command”: ”START-ABR”,”Output”:”/home/hamza/Downloads/1/output.m3u8”,

”Manifests”:[”InstanceID”:”1”,”Input”:”/home/hamza/Downloads/SampleVideo-

1280x720-10mb.flv”,”Output”:”/home/hamza/Downloads output.m3u8”,” Output-

Format”:”HLS”,”HlsIndexEntry”:”1/output.m3u8” ”HLSOptions”:”SegmentDuration”:

”10”,”MaxPlaylistEntries”: ”10”,”BaseUrl”: ””,”SegmentPath” ”/home/hamza/-

Downloads/1/”,”VideoEncoder”: ”H264”,”VideoBitrate”: ”936000”,”Width”:”320”,

”Height”:”240”,”AudioEncoder”:”AAC”,”AudioBitrate”: ”64000”,”Channels”: ”2”,

”SampleRate”: ”44100”

1. Command: This should always have the value “START” for this command.

2. Output: This shows the path of ABR .m3u8 master playlist file.

3. InstanceID: This field represents the unique Id with which a new transcoding

/ segmenting instance will be created. This instance Id will be used in all

future commands to refer to the created transcoding / segmenting instance.

For example, in INST-STATS, STOP commands etc.

Implementation Methodology 34

4. Input: This specifies the input video source that we want to transcode, which

can be in any format

5. Output: This output command is the path of the .ts file, which is playlist

file, that have information of all .ts segments of the video.

6. Output format: This specifies the format of the output. Currently it can

have the following values:

(a) HLS

7. HLS options: This should only be present if the “OutputFormat” is HLS.

8. HLS options: This should only be present if the “OutputFormat” is HLS.

9. Video Encoder: This specifies the video encoder to be used for output video.

It can have the following values:

(a) H264

(b) H265

10. VideoBitrate: Bit-rate in bits per second of the output video. This is an

optional field in general.

11. Segment duration: it is the duration of the .ts segments, that how long a

single segment can be of.

12. Width: Width of the output video if it needs to be scaled. This is ignored

if the “VideoEncoder” is set to “COPY”.

13. Height: Height of the output video if it needs to be scaled. This is ignored

if the “VideoEncoder” is set to “COPY”.

14. AudioEncoder: This specifies the audio encoder to be used for output audio.

It can have the following values:

(a) AAC

(b) COPY

Implementation Methodology 35

15. AudioBitrate: Bitrate in bits per second of the output audio. This is an

optional field in general.

16. Channels: No of channels of the output audio. Ignored when “AudioEn-

coder” is “COPY”.

17. SampleRate: Sampling rate of the output audio. Ignored when “AudioEn-

coder” is “COPY”.

Figure 4.5 shows the whole procedure of transcoding of the video in to its segments,

in which i used 2 Linux command terminal in the first terminal window whole

command that is described above is passed to the transcoding service, that is

running in the background in the second command line terminal, first we have

to start the transcoding service which opens and input pipe for the reception

of any video source, when the command is passed from the other terminal then

transcoding gets starts moreover, in this figure you can also view all the three video

instances named as instance ID 1,2 and 3 that starts at some specific time and

stooped after the completion of transcoding. The start time of all the instances

are same but the stopped time is different because of the difference in the bitrate

and resolution of the video, high resolution video consumes more time then the

lower one.

Figure 4.5: Transcoding server procedure window terminals.

Implementation Methodology 36

Figure 4.6 shows the folder containing transcoding video, in which you can able

to see master file with name output.m3u8 with three folders named with 1,2 and

3 having different resolution in it. Moreover folder 1 shows the palylist file with

.ts segments formed in the result of segmentation.

Figure 4.6: Folders depicting .ts files with master playlist and media playlist.

Implementation Methodology 37

4.4 Benchmark Comparison with Existing

Architectures

Testbeds Testbed for
educational
video
streaming

 Testbed for
QoE analysis

Simulated
testbed on
Mininet

Real
testbed

Testbed for
streaming
over Wi-max
network

Proposed
testbed

Simulator
used

Apache
stress test
tool

Not
discussed

Mininet Not
discussed

Opnet J.meter and
siege stress
tester tool

Nodes
tested

01 01 01 05 01 06

Mobility Not
discussed

Easy Easy Low Easy High

Scalability Not
discussed

High High Low Medium High

Performanc
e metrics

Response
time

CPU
consumption
, segment
size effect
and MOS of
staling
events

Switching
representations

Segment
bitrate,
video
bitrate
and initial
delay

CPU
consumption
and
throughput

Response
time,
throughput,
effect of
segmentation,
initial delay,
effect of RAM

Realism Simulation Emulation Simulation and
emulation

100% real Simulations Real and
simulations

Network
topology

Simulation Emulation Simulation Real Simulation Real

Cache
service

No Support No No No Highly
efficient

Load
balancing

No No No No No Yes

Preferred
segment
sizes

No 4-6 sec Not discussed Small
segments

Not
discussed

6-12 sec

Language Not
discussed

Extensive
language

Python Not
discussed

Not
discussed

JSON’S, html
and c++.

Virtual
machine

No Linux Linux No Not
discussed

Yes

Network
topology

Simple Complex Simple Simple Simple Complex

Wireless
tested
nodes

No No No No Yes Yes

VM chains
distribution

No Support No No Not
discussed

Yes

Current
deployment

NO NO NO NO NO In production
of IPTV service

Figure 4.7: Benchmark Comparison with latest testbeds.

Chapter 5

Simulations and Results

5.1 Introduction

The Proposed solution is using Big Bunny video [47] for the evaluation of QoE

parameters and its effects on Quality of Experience by changing different parame-

ters of video. For the production of HLS content, as described earlier, transcoding

server is used, that further uses ffmpeg and Lib-X264 library. This HLS content

contains 24 representations that constituents of 3 levels of video quality such as:

Low, Medium and High quality.

These 3 levels of video quality are encoded in different bit-rates, which are gradu-

ally increased from low quality to high quality, in this research case, a low quality

video, which has a resolution of 320x240 with a bit-rate of 936000bps, a medium

quality video, which has a resolution of 640x480 with bit-rate of 128000bps and

in the same way high quality video with resolution of 1280x720 with bit-rate of

180800bps, with separate audio bit-rates for each quality representation gradually

increased from low quality to high quality. 64000bps for low quality and 192000bps

for high quality with sample rate 44100 or 44.1khz. Furthermore, this research pro-

vides 8 versions of the same video having different video segment length or chunks

sizes, that are starting from 2s. These segment sizes are 2s, 6s, 8s,10s, 12s, 15s and

38

Simulations and Results 39

20s. By generating these different segment sizes, the effect over throughput, ini-

tial delay, quality switch, stalling events and QoE has been observed by changing

important parameters.

In the first test, observation is made about initial delay by varying the number of

users. In which users simultaneously try to fetch the same content. For performing

this test, J.meter is used that have capability to retrieve HLS streams by increasing

the number of threads or users simultaneously and have capability to retrieve

all relevant information such as, initial delay or response time and throughput.

Therefore J.meter is allowed to run over separate machine in Linux distribution

platform and users are varied from 1 to 150 and response time have been observed

for each quality representation from low to high. While considering this response,

it has been observed that almost up-to 50 users, there is no big difference while

fetching the high quality or low quality video but as users are increased from 50, one

can easily observe that the gap between three video qualities increases significantly

and also response time for each quality increases uniformly with increase of users.

Therefore 50 users can be declared as the point of fluctuation or fluctuating point

in this case, which shown in figure 5.1. The behavior can be observed in the below

figure, moreover the J.meter configuration is also depicted in figure 5.2.

Figure 5.1: Response time and accumulative time graph with number of users
with CDN.

Simulations and Results 40

The number of threads or can be seen in the J.meter console in figure 5.2, where I

have put rampup period 0, which means that all users will simultaneously request

for the content.

Figure 5.2: J.meter simulator showing to increase the number of users

The figure 5.3 shows the J.meter simulation in which, i have performed the test

with 50 users simultaneously and it can be seen from the figure that how the

segments of HLS protocol retrieved by the simulator, further information about

the packet size and its load time with throughput is also found by j.meter.

Figure 5.3: J.meter simulator showing Fetching of segments

Simulations and Results 41

Shown in figure 5.4, this research also generated the result of initial delay with

variation of number of users while not using load balancer and caching servers,

which in this research referred as CDN or content delivery network. Moreover,

Figure 5.4: Response time and accumulative time graph with number of users
without CDN

the throughput is also measured and evaluated against number of users by using

J.meter, this research have also compare the throughput of the system without

using content delivery network with by using content delivery network, it has been

observed that with using CDN, the throughput increases and the difference is more

interestingly seen in case of less number of users. The comparison can be seen in

the figure 5.5:

More tests were run over the architecture for the evaluation of the effect of seg-

ment size by fetching the videos of different segment sizes, it is observed that the

throughput is much higher for smaller size segments and after the size of 6 seconds

it becomes consistent or uniform, this test was run by accommodating 50 users

simultaneously. The results can be seen in the figure 5.6:

In the same way, it can be seen that response time and accumulative time for

three qualities changes with the variation of segment size until 10-12 seconds it

increases with the increase of segment size and then it became much uniform at

Simulations and Results 42

Figure 5.5: Throughput with number of users

the duration of 15-20 seconds. But response time is least at the segment seize of

2 seconds. The results of the above discussion are given in figure 5.7:

For encounter the device capability on which the certain video is playing and from

which the certain video is requested,RAM of the same virtual machine are changed

and try to find the effect on system’s throughput and response time, in figure 5.8,

the average throughput is much less for the 512 MB RAM and then it increases

with sudden change in case of 1Mb then slight change has been observed in figure

5.8 and 5.9.

5.2 Resource Usage Evaluation

Resource usage evaluation is also done upon the proposed architecture; in which

I have captured CPU load for 300 seconds for all segment sizes that are of 2s, 4s,

6s, 8s, 10s, 15s and 20 seconds. From which one can observe the behavior of the

Simulations and Results 43

Figure 5.6: Throughput with variation of segment size

CPU consumption and Energy consumption. Important things that can be seen

in this evaluation are:

1. Segments with short sizes do more CPU consumption then the segments of

greater sizes this can be seen in the figure below.

2. In the same way short size segments appear to consume more energy than

the segment having greater sizes in seconds.

This type of behavior appears because, while fetching short size segments, client

have to make multiple HTTP connection to the main server and then stored into

the buffer of the application for smooth playback of the desired video, as many

chunks of the videos are, that much connection will be established by the client,

lesser the video chunks less will be the connections established by the client or

from the client end. This behaviour is depicted in figure 5.10 and 5.11.

Simulations and Results 44

Figure 5.7: Throughput with variation of segment size

5.3 Implementation in the IPTV Service

The proposed architecture is also assembled in the current project of ignite, named

by “3GPP-IMS compliant E2E Mobile IPTV solution for 4G/LTE Networks”, and

validated for both live streaming and VOD.

This project is developing up to the mark architecture for IPTV services for the

telecom and internet service organizations. Because of using IMS, it can be con-

nected in any running network of any organization. IMS is referred as IP Multime-

dia Subsystem, in this system a client will register itself through IMS system for

became the client of the service and then its billing and charges will automatically

charge through IMS based billing and charging system. This services will able to

run over 4G and LTE networks and also have capability to become the part of 5G

architecture that will enhance its future capability, the architecture including the

architecture proposed in this research are using standard ports and tools that can

be easily modifiable and flexible in nature. The complete architecture diagram

of the IPTV service is shown in figure 5.12: Where the proposed design is also

Simulations and Results 45

Figure 5.8: Effect of RAM on Throughput at the user End

shown, which is integrated in the whole system design, that includes encoding

server, HTTP server, Video CDN and client end.

5.4 Testing with Seige

Another test is performed over a slightly changed architecture shown in figure 5.13,

in which transcoding server is not included and it is performed to evaluate the

performance of content delivery network, it is done by using Nginx benchmarking

tool named as Siege, which measures the real time performance of the server by

creating load over the desired server. With the help of siege, we measured the

performance of our proposed architecture by requesting video file from that server

with the server that has only Nginx web-server. Which shows the performance of

architecture that this research had proposed that will enhance quality of experience

as well as full fill the need of content delivery network for IPTV services by reducing

the response time of the desired content.

Simulations and Results 46

Figure 5.9: Effect of RAM on Response Time at the User End

The siege stress test is run over both servers one by one to check the response

time of the requested video file, for elapsed time of 10 seconds and changing the

number of concurrent user in one time on the server. After that we compared the

response time of both our architecture and general Nginx web server through log

file and interpret the data in to graphical form shown in figure 5.14.

The simulation results from the siege stress test revealed that the response time

is better when the number of concurrent users is less without using proposed

CDN solution, but is drastically decreases when the user load increases over the

server. While CDN behaves pretty much consistent, as the response time varies

between 4 seconds to hardly 6 seconds from less user load to high user load,

means for the Video server, which have high traffic load, may able to give much

less response while using our architectures. Services like IPTV had much load

on server every time, therefore the proposed solution is fair option for such a

service. The response time will get minimized by proposed architecture, resulting

in improvement of QoE. Under the same scenario, another reading is taken from

Simulations and Results 47

Figure 5.10: Effect Segment size over CPU consumption

the Siege Benchmarking log file that is the relation of throughput with number of

concurrent users, the results can be analyzed from the figure 5.15.

Almost the same trend is followed in the above simulation results. Throughput

of CDN solution is consistent as the number of concurrent user increases, while

the throughput of other server is very low. The lowest throughput of other server

with load of 1000 user is 0.98 Mbps, while our CDN solution have throughput of

153.08 Mbps. Number of transactions at different traffic load is also important

criteria for judging the performance of any server, therefore we have taken results

that relate number of transactions with the traffic load. After finding results,

we visualized that the transaction rate of the other server is better initially but

decreases as the load of user increases on the server, while our CDN solution

behaves much expectedly and very little change appears in transaction rate, when

load is increased. The results can be seen in the figure 5.16:

Simulations and Results 48

Figure 5.11: Effect of segment size over Energy consumption

IPTV Performance Metrics

This section contains the results of the real time measurements from the IPTV ser-

vice, these measurements constitute of QoE metrics including initial delay, stalling

frequency and Quality switching frequency.The measurements are enlisted in the

table 5.1. It has been observed that with increase of segment size the initial delay

also increases, but the stalling events and Quality frequency reduces.

5.5 Subjective Analysis

Another test is ran over the architecture, this is for subjective analysis, which aims

to evaluate and estimates the Quality of Experience to an accurate one. For this

purpose, 15 users were selected for the execution of the experiment , who have

enough knowledge about the video perception quality. The Test was conducted in

Simulations and Results 49

Figure 5.12: Complete Architecture diagram of IPTV service

Real time Results
Segment size Initial Delay Number of

stalling events
Number of times
Quality switches

2s 1 ms 6 times 6 times
4s 1 ms 2 times 4 times
6s 2 ms 4 times 4 times
8s 2 ms 4 times 4 times
10s 4 ms 3 times 2 times
12s 4 ms 2 times 1 times
15s 5 ms 1 times 1 times
20s 5 ms 1 times 1 times

Table 5.1: Measurements from IPTV service.

real environment on real server, configured at Mobilevas.co, a software house in

Islamabad Pakistan. For the analysis a complete dataset of videos were available

consisting of different segment sizes and different qualities, in this session every

video is played for 2 minutes and the participants were strictly guided for the rating

of the video quality in the proper way, for this a time of 2 minutes were given after

the every video session with different segment sizes to give the reviews about

the three important parameters, that hurt the QoE and also rate the Quality of

Simulations and Results 50

Figure 5.13: Content Delivery Network Architecture

MOS Results
Segment size Initial Delay Number of times

Quality switches
Number
of stalling
events

QoE

2s 1 ms 3 times 5 times 3
4s 2 ms 4 times 4 times 2
6s 2 ms 4 times 3 times 3
8s 1 ms 5 times 4 times 3
10s 3 ms 4 times 6 times 3
12s 3 ms 2 times 2 times 4
15s 4 ms 6 times 3 times 2
20s 5 ms 4 times 3 times 2

Table 5.2: MOS results.

Experience for every segment size on the scale of 1-5. The scale from 1-2, represents

dissatisfaction of the user and the scale of 3-5, means satisfactory level, where 1 is

the poorest and 5 is the excellent. The results achieved during subjective analysis

is given in the table 5.2:

Simulations and Results 51

Figure 5.14: Results of response time VS Users load on server

After analysis of this experiment it has been seen that, the results of initial delay

is much worst in the case of large segment sizes like in the range of 12- 20 seconds.

Moreover other important factors has been evaluated in this experiments conclude

smooth playing region in segment sizes, in which a region between 6- 12 seconds

found to be much smoother than other segments that have comparatively less

initial delays also. The bar chart of the reviews of the people is given in figure

5.17.

Another important finding came into attention that, the Mean Opinion score given

by the reviewers or the subjective analysis and the influence factors, initial delay,

segment sizes and stalling frequency (objective analysis) both have the inverse

relationship with each other, as the influence factors number increases the Quality

of Experience at the user end decreases exponentially, the trajectory is also given

in figure 5.18.

Simulations and Results 52

Figure 5.15: Results of Throughput Vs Users load on server

Figure 5.16: Results of Number of transactions VS Users load on server

Simulations and Results 53

Figure 5.17: Region of smooth playing in segment sizes

1 2 3 4 5
0

1

2

3

4

5

6

Inf
lue

nc
e m

etr
ics

M e a n O p i n i o n S c o r e o f Q u a l i t y o f E x p e r i e n c e

Figure 5.18: Relationship of influence factors with subjective analysis

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This section includes the conclusion and future work. In this research, adap-

tive bit-rate video delivery network has been tested to enhance the response time

and throughput by varying different factors influencing it. Moreover key param-

eter fluctuations are also measured and analyzed by varying the segment size of

the same video with multiple representations. The factors including accumulative

time, stalling frequency and quality switching representation is also compared with

quality of experience and inverse relationship has been observed between all the

factors and the Quality of Experience from the subjective users. Furthermore, it

has been observed that load balancing and caching servers have positive effect on

response time, throughput and number of transactions through Seige load testing

tool by increasing the number of concurrent users from 1 to 200 users at a time

. The whole testbed is deployed on real machines and the real time measure-

ments were taken through J.meter, which evaluates the performance of proposed

architecture in terms of response time and throughput.

This research presents the fact that segment size is an important factor, which

contributes effectively on the QoE at the end users. By analyzing throughput

and response time by the users, a segment length of 6 sec - 12 sec is proposed

54

Conclusion and Future Work 55

for the smooth streaming of the video. The energy and CPU consumption is also

evaluated and observed that smaller segments result in more energy and CPU

consumptions rather longer chunks as multiple connections were generated by the

end client application or server to fetch the smaller segments multiple times.

6.2 Future Work

This architecture design may be able to expand by including intelligent system,

for network monitoring and transcoding of videos in real time, a centralized moni-

toring system may be included for intelligent route optimization of the users to the

concerned caching server. Moreover, by taking all the real time statistics the server

can able to take decision of the encoding of the videos, to which time a specific

coding schemes will optimize the QoE at the user end. In addition, for the QoE

analysis, a prediction model may be implemented by applying machine learning

algorithms like neural networks, that enables the prediction of the required QoE

as well as current user’s QoE and then comparison of the subjective and objective

QoE may be made.

The proposed architecture will be implemented, to perform adaptive streaming by

including monitoring points at the server side, network side, and the client side

and then dynamic exchange the PQoS Measurements from STB and Head End to

a centralized QoS based video streams transmission control system by introduc-

ing a policy controller for centralized decisions based on the network monitoring

information. User pulls the service from server while Network QoE Monitor gets

the User Device stats, Usage Stats, Network QoS and Application/Service Stats to

build Video Profiles of every user. This Network QoE Monitor directs the Encod-

ing Server on the basis of QoE Score Model. It also performs QoE Reporting. This

mechanism shall implement a network monitoring mechanism both at server side

and client side to monitor the status of channel, current bandwidth, the capability

of user device such as computing power and screen size, available bandwidth to

Conclusion and Future Work 56

transmit adaptive video streams by adjusting the video frame size, video quality

and by changing the compression technique or parameters.

Bibliography

[1] O. Oyman and S. Singh., “Quality of experience for http adaptive streaming

services,” IEEE Comm Magazine, vol. 50, no. 4, pp. 20–27, 2012.

[2] S. I, “The mpeg-dash standard for multimedia streaming over the internet.”

IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[3] H. F. Adhikari VK, Guo Y and et al, “Measurement study of netflix, hulu, and

a tale of three cdns.” IEEE ACM Transactions, vol. 23, no. 6, pp. 1984–1997,

2015.

[4] Z. T. H. T. Seufert M, Egger S Slanina M and T. P, “A survey on quality

of experience of http adaptive streaming,” IEEE Comm Surveys Tutorials,

vol. 17, no. 1, pp. 469–492, 2015.

[5] T. Stockhammer, “Dynamic adaptive streaming over http: standards and

design principles.” ” In Proceedings of the second annual ACM conference on

Multimedia systems, San Jose, CA, USA, vol. 2, pp. 133–144, 2011.

[6] V. H. M. S. Vijay Kumar Adhikari Yang Guo Fang Hao, Matteo Varvello

and Z. Zhang., “understanding and improving multi-cdn movie delivery,” In

INFOCOM, vol. 25, no. 30, pp. 1620–1628, 2012.

[7] R. Pantos and W. May, “Http live streaming,” 2017.

[8] M. Levkov, “Video encoding and transcoding recommendations for http dy-

namic streaming on the adobe R© flash R© platform,” White Paper, Adobe Sys-

tems Inc, 2010.

57

Bibliography 58

[9] A. Zambelli, “Iis smooth streaming technical overview,” Microsoft Corpora-

tion, vol. 3, p. 40, 2009.

[10] L. Garćıa, J. Lloret, C. Turro, and M. Taha, “Qoe assesment of mpeg-dash in

polimedia e-learning system,” in 2016 International Conference on Advances

in Computing, Communications and Informatics (ICACCI). IEEE, 2016,

pp. 1117–1123.

[11] J. Lloret, M. Garcia, M. Atenas, and A. Canovas, “A qoe management sys-

tem to improve the iptv network,” International Journal of Communication

Systems, vol. 24, no. 1, pp. 118–138, 2011.

[12] M. Garcia, A. Canovas, M. Edo, and J. Lloret, “A qoe management system for

ubiquitous iptv devices,” in 2009 Third International Conference on Mobile

Ubiquitous Computing, Systems, Services and Technologies. IEEE, 2009, pp.

147–152.

[13] C. V. N. Index, “Forecast and methodology, 2014-2019 white paper,” Re-

trieved 23rd September, 2015.

[14] S. Adler, “The slashdot effect: An analysis of three internet publications

(1999),” Disponıvel em:¡ http://ssadler. phy. bnl. gov/adler/SDE/SlashDot-

Effect. html¿. Acesso em, vol. 17, 2001.

[15] N. Bartolini, E. Casalicchio, and S. Tucci, “A walk through content delivery

networks,” in International Workshop on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems. Springer, 2003, pp. 1–25.

[16] A.-M. K. Pathan and R. Buyya, “A taxonomy and survey of content delivery

networks,” Grid Computing and Distributed Systems Laboratory, University

of Melbourne, Technical Report, vol. 4, p. 70, 2007.

[17] D. C. Verma, “Content distribution networks,” A Wiley-Interscience Publi-

cation, 2002.

Bibliography 59

[18] M. Aguilar, “Aprendizaje y tecnoloǵıas de información y comunicación: Hacia

nuevos escenarios educativos,” Revista Latinoamericana de Ciencias Sociales,

Niñez y Juventud, vol. 10, no. 2, pp. 801–811, 2012.

[19] D. Zhang, L. Zhou, R. O. Briggs, and J. F. Nunamaker Jr, “Instructional

video in e-learning: Assessing the impact of interactive video on learning

effectiveness,” Information & management, vol. 43, no. 1, pp. 15–27, 2006.

[20] F. A. Urbano, G. Chanch́ı, W. Y. Campo, H. F. Bermúdez Orozco, and E. As-

taiza Hoyos, “Entorno de pruebas para el soporte de videostreaming usando

herramientas libres,” Revista Cient́ıfica Ingenieŕıa y Desarrollo, vol. 34, no. 2,

pp. 333–353, 2016.

[21] P. L. Agudelo, W. Y. Campo, A. Rúız, J. L. Arciniegas, and W. J. Giraldo,

“Architectonic proposal for the video streaming service deployment within

the educational context,” in Colombian Conference on Computing. Springer,

2017, pp. 313–326.

[22] J. P. Mulerikkal and I. Khalil, “An architecture for distributed content de-

livery network,” in 2007 15th IEEE International Conference on Networks.

IEEE, 2007, pp. 359–364.

[23] A. Alfa, F. Ogwueleka, E. Dogo, and M. Sanjay, “A hybrid web caching

design model for internet-content delivery,” Covenant Journal of Informatics

and Communication Technology, vol. 4, no. 2, 2016.

[24] J. Apostolopoulos, T. Wong, W.-t. Tan, and S. Wee, “On multiple description

streaming with content delivery networks,” in Proceedings. Twenty-First An-

nual Joint Conference of the IEEE Computer and Communications Societies,

vol. 3. IEEE, 2002, pp. 1736–1745.

[25] S. Wee, J. Apostolopoulos, W.-t. Tan, and S. Roy, “Research and design

of a mobile streaming media content delivery network,” in 2003 Interna-

tional Conference on Multimedia and Expo. ICME’03. Proceedings (Cat. No.

03TH8698), vol. 1. IEEE, 2003, pp. I–5.

Bibliography 60

[26] X. Wang, T. Kwon, Y. Choi, H. Wang, and J. Liu, “Cloud-assisted adaptive

video streaming and social-aware video prefetching for mobile users,” IEEE

wireless communications, vol. 20, no. 3, pp. 72–79, 2013.

[27] M. Taha, J. Lloret, A. Ali, and L. Garcia, “Adaptive video streaming testbed

design for performance study and assessment of qoe,” International Journal

of Communication Systems, vol. 31, no. 9, p. e3551, 2018.

[28] A. Zabrovskiy, E. Kuzmin, E. Petrov, and M. Fomichev, “Emulation of dy-

namic adaptive streaming over http with mininet,” in 2016 18th Conference

of Open Innovations Association and Seminar on Information Security and

Protection of Information Technology (FRUCT-ISPIT). IEEE, 2016, pp.

391–396.

[29] Y. M. Hassan, A. Helmy, and M. M. Rehan, “Effect of varying segment size

on dash streaming quality for mobile user,” in 2014 International Conference

on Engineering and Technology (ICET). IEEE, 2014, pp. 1–4.

[30] Y. Liu, S. Dey, D. Gillies, F. Ulupinar, and M. Luby, “User experience mod-

eling for dash video,” in 2013 20th International Packet Video Workshop.

IEEE, 2013, pp. 1–8.

[31] J. Hwang, J. Lee, and C. Yoo, “Eliminating bandwidth estimation from adap-

tive video streaming in wireless networks,” Signal Processing: Image Com-

munication, vol. 47, pp. 242–251, 2016.

[32] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang, and B. Li,

“Design and deployment of a hybrid cdn-p2p system for live video stream-

ing: experiences with livesky,” in Proceedings of the 17th ACM international

conference on Multimedia. ACM, 2009, pp. 25–34.

[33] M. Y. Fuller, S. Mukhopadhyay, and J. M. Gardner, “Using the periscope

live video-streaming application for global pathology education: a brief intro-

duction,” Archives of pathology & laboratory medicine, vol. 140, no. 11, pp.

1273–1280, 2016.

Bibliography 61

[34] T. Hartsell and S. C.-Y. Yuen, “Video streaming in online learning,” AACE

Journal, vol. 14, no. 1, pp. 31–43, 2006.

[35] K. Sigama and B. M. Kalema, “Conceptualizing moocs implementation for

higher education in developing countries,” in 2018 IEEE 6th International

Conference on MOOCs, Innovation and Technology in Education (MITE).

IEEE, 2018, pp. 14–18.

[36] L. De Cicco and S. Mascolo, “An adaptive video streaming control system:

Modeling, validation, and performance evaluation,” IEEE/ACM Transactions

on Networking (TON), vol. 22, no. 2, pp. 526–539, 2014.

[37] A. B. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB protocols

of the HTML5 real-time web. Digital Codex LLC, 2012.

[38] T. Stockhammer, “Dynamic adaptive streaming over http–: standards and

design principles,” in Proceedings of the second annual ACM conference on

Multimedia systems. ACM, 2011, pp. 133–144.

[39] M. Elkotob, “Architectural, service, and performance modeling for an ims-

mbms-based application,” in 2010 IEEE International Conference on Com-

munications. IEEE, 2010, pp. 1–7.

[40] G. Fortino, C. E. Palau, W. Russo, and M. Esteve, “The comodin system:

A cdn-based platform for cooperative media on-demand on the internet,” in

Proceedings of the 10th International Conference on Distributed Multimedia

Systems (DMS’04), 2004.

[41] M. Li and C.-H. Wu, “A cost-effective resource allocation and management

scheme for content networks supporting iptv services,” Computer Communi-

cations, vol. 33, no. 1, pp. 83–91, 2010.

[42] M. Taha, “A novel cdn testbed for fast deploying http adaptive video stream-

ing,” in Proceedings of the 9th EAI International Conference on Mobile Mul-

timedia Communications. ICST (Institute for Computer Sciences, Social-

Informatics and . . . , 2016, pp. 65–71.

Bibliography 62

[43] M. Garcia-Pineda, S. Felici-Castell, and J. Segura-Garcia, “Using factor anal-

ysis techniques to find out objective video quality metrics for live video

streaming over cloud mobile media services,” Network Protocols and Algo-

rithms, vol. 8, no. 1, pp. 126–147, 2016.

[44] J. M. Jimenez, J. O. Romero Mart́ınez, A. REGO MAÑEZ, and J. Lloret,

“Analyzing the performance of software defined networks vs real networks,”

International Journal On Advances in Networks and Services, vol. 9, no. 3-4,

pp. 107–116, 2016.

[45] A. Zambelli, “Iis smooth streaming technical overview. microsoft corporation,

2009.”

[46] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and stability

in http-based adaptive video streaming with festive,” IEEE/ACM Transac-

tions on Networking (ToN), vol. 22, no. 1, pp. 326–340, 2014.

[47] A. Zabrovskiy, C. Feldmann, and C. Timmerer, “Multi-codec dash dataset,”

in Proceedings of the 9th ACM Multimedia Systems Conference. ACM, 2018,

pp. 438–443.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background
	1.2 HTTP Live Streaming Protocol (HLS)
	1.3 Components of HTTP Live Streaming Protocol
	1.4 Playlists

	2 Literature Review
	2.1 Introduction
	2.2 Related Work
	2.3 Comparison of Architectures
	2.4 Existing Architectures of Content Delivery Networks
	2.5 Limitations of Existing Research
	2.6 Problem Statement

	3 System Description and Performance Parameters
	3.1 Introduction
	3.2 Quality of Experience Metrics

	4 Implementation Methodology
	4.1 Introduction
	4.2 Flow chart of the Architecture
	4.3 Components and Technologies Used
	4.4 Benchmark Comparison with Existing Architectures

	5 Simulations and Results
	5.1 Introduction
	5.2 Resource Usage Evaluation
	5.3 Implementation in the IPTV Service
	5.4 Testing with Seige
	5.5 Subjective Analysis

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

